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Part I

SLOW GROWTH OF CRACKS IN A RATE SENSITIVE TRESCA SOLID

by

Michael P. Wnuk

(Abstract)

The paper proposes an extension of the classical theory of fracture

to viscoelastic and elastic-plastic materials in which the plasticity

effects are confined to a narrow band encompassing the crack front.

It is suggested that the Griffith-Irwin criterion of fracture, which

requires that the energy release rate computed for a given boundary value

problem equals the critical threshold, ought to be replaced by a differential

equation governing the slow growth of a crack prior to the onset of rapid

propagation. A new term which enters the equation of motion in the dissipative

media is proportional to the energy lost within the end sections of the

crack, and thus it reflects the extent of inelastic behavior of a solid.

A concept of "apparent" surface energy is introduced to account for

the geometry dependent and the rate dependent phenomena which influence

toughness of an inelastic solid.

Three hypotheses regarding the condition for frac.ture in the subcritical

range of load are compared. These are: (a) constant fracture energy

(Cherepanov), (b) constant opening displacement at instability (Morozov)

and (c) final stretch criterion (Wnuk).



Slow Growth of Cracks in a Rate Sensitive Tresca Solid,

by

Michael P. Wnuk

Theoretical analysis shows that the amount of slow growth occurring

in a plane stress tensile specimen, subjected to a subcritical stress intensity

level, is affected by the following parameters:

(1) ductility and rheological sensitivity of the material,

(2) rate of loading,

(3) initial crack size,

(4) geometrical configuration of the test.

Some of these factors were included in the earlier semi-empirical approaches

of Krafft et al. [3], Brown and Srawley [1], and in the only available exact

treatment of slow growth under tearing mode of deformation due to McClintock

[4], McClintock and Irwin [5] and Rice [6]. Here Rice's idea of a universal

R-curve is re-examined. It turns out that the curve is universal, that is

independent of geometry and the initial crack size, only in the limiting case

of a rate-insensitive elastic-plastic solid. When time effects are accounted

for in the constitutive equations of the matrix which contains the crack, the

"universality" no longer holds.

The governing equation which describes the quasi-static extension of the

crack under confined yielding condition is an integro-differential equation

derived in [8]:

dR A f [R + FI - +R- R(R- A) + A~ + - +

+ R2f { p(s)(p(s) - s) ( P(s) + J ) s) d Ro
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Here R denotes the length of plastic zone ahead of the crack front, R

is its value at the growth initiation, A is the dimension of the process

zone, T is the normalized creep compliance. Both R and P are functions of

time t, or equivalently, functions of the current crack length Z, which is

treated as a time-like parameter. Other relations are

E= A/R(t - st) , 6t = a/l , i = dk/dt

p(s) = 1 + (e - s) dR/dk , 6Y = Y(6t) - T(o)

The criterion for crack opening, which was employed in order to derive

eq. (1), is that of "final stretch", cf. [8]. In contrast to the COD

criterion the final stretch condition is path-dependent and thus it appears

to withstand Rice's criticism [7] of earlier work on this subject by Cherepanov

[2]. Postulating this criterion in [8] we required that the amount of stretching

hich occurs within the process zone during the time interval just prior to

fracture is a material constant. Such an approach assumes nothing about

the current tip displacement and the length of the associated plastic zone.

In fact these two entities turn out to be functions of time and the loading

history.

It should be noted that the final stretch criterion coincides with

McClintock's criterion of critical strain attained over the Neuber domain.

One may also add{in the limit case of steady-state propagation, both the

COD and the final stretch criteria converge. The essential difference

between them becomes obvious, though, within the subcritical range of

applied stress intensity.

To make the problem mathematically tractable we assume further that

the length of the process zone is small vs. the plastic zone size, i.e.



A/R <<1. Then eq. (1) reduces to

A 4R1 dR -l R
(2) 2 -~nQ) + A.[I + CR( R/ Q) ] - AC(DR/ Q) RT = R o

Here (dR/d- R/Di)CA (DR/ Q) - 1 has been substituted for SY(=BA/i); B denotes

the slope of creep compliance at time zero, Q is the loading parameter and

C = B/Q. To illustrate applications of eq. (2) we shall integrate it

numerically for the case of a crack contained in an infinite plate under

tensionS; then R =(1/2)Q2 (k)£ , Q = Tw/2Y. Since the ratios R/A and £/A

are very large numbers, it is convenient to introduce the logarithmic function

and to cast the eq. (2) into the following form

dY A - (1/2)Y+ exp(3/2)(Y - X) exp(X - Y)
(3) x

dX 1 + exp(1/2)(Y -X)

where

X = log(k/A), A = (Ro/A) - log2

(4)
Y = log(R/A), Y = Y(X)

Equation (3) has been integrated numerically for a certain set of initial

conditions, and the results are shown in Fig. 1. The figure illustrates the

effect of rate sensitivity of the material and the rate of loading on the

shape of the R-curve. It is seen that not only the slope of the curve is

affected, but also pronounced changes in location of the ultimate instability

point are observed. Examples of integration of the equation of motion when

the visco-elastic dissipation is dominant, are shown in Fig. 2 and Fig. 3.

Such a case of a "creeping crack" is considered in more detail in [9].

For engineering applications it is convenient to re-write the governing

equation (2) in terms of the ratios R/R, and £/Rk , where R, denotes the

2 2
steady-state limit of the plastic zone size, say R = rK./8Y . The symbol



K. denotes the maximum plane stress fracture toughness which would be attained

in an ideal case, when the conditions of the test are such that the prior to

failure slow growth is fully developed. Of course, the actual fracture

toughness Kf, i.e. the value of K at which the rapid motion begins, is bracketed

by the initiation toughness Ko and the maximum steady-state toughness K,.

Normalizing the plastic zone size and the crack length as follows

(5) R/R = p , /R R = K2/8y2

changes eq. (2) into

(6a)dp (/V)9 /p) + Cp2/C 2 ,p =(/22
(6a)1 + Cp/f

or
(6b) d = 2/Q 2 ) -

dc 2CQ(1 + CQ/2)

for a crack in an infinite plate, and

dp (1/2)Zn 1/p) + Cp2{1 + (p /Co)tan(pC/Co)}/C 2pcsec(pC/Co)-
(a)d 1 + Cp/j2pCsec(p/tCo)

or

p =(1/2Q2 Csec(pC/do)

dQ(7b) - n[2/Q2csec(pC/Co)] - Q2 [1 + (pC/Co)tan(pC/Co).]ser(pr/ro
(7b) d 2Q(1 + CQj2)sec(pc/co)

for a crack traversing a panel of width2.The initial crack length is given

by co = o/R and p denotes the initial crack length to panel width ratio ,

p = rrZo/2b. The locus of terminal instability follows readily from eqs.

(6b) and (7b) if dQ/d is set equal to zero. Then for a crack contained in

an infinite plate one has

2 2
(8) C. =2/Q exp (Q
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while for a central crack in a finite width panel it is

(9) tn [2/Q2 ffsec(prf/co)] = 92f[l + (prf/1o)tan(pCf/Co)]sec(prf/Co)

Interestingly the rate sensitivity C does not enter explicitly in the above

relations. It is present here, though, in an implicit way, since both the

critical load Qf and the critical crack size cf are pronouncely affected

by the rate sensitivity. This can be seen only after the integration of

equations (6) and (7) is completed, see Fig. 4.

The effect of finite width on the amount of slow growth which takes

place prior to failure is illustrated in Fig. 4, where Q vs. C curves are

shown for both infinite and finite plates at certain levels of loading rate

Q. Two different trends are observed: (1) the slow growth is enhanced when

the panel width staysconstant while the initial crack size is increased,

and (2) the slow growth is diminished when initial crack size is kept constant

but the panel width increases, see Figs. 5 and 6

In general the amount of slow growth before the final instability sets

in turns out to be a function of (1) ductility, (2) rate-sensitivity, (3)

rate of loading (4) initial crack.size, and (5) geometry of the test. Although

no closed form solutions are available at this time, the influence of the fore-

going factors has been investigated numerically, and the results are gathered

in Figs. 5 through 8. The graphs were derived from a number of integrations

of the governing eq. (2) performed on an IBM 360.

It should be noted that for the case of fast loading, or equivalently,

for a rate insensitive solid (C-+O), the equation (2) which describes the

R-curve degenerates to

(10) d = (1/2) n (l/p)(i ) C .
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This has a closed form solution

(11) C -CO = 2{ei[Znyo] - ei[ en]

Set dtei(x) = f dt

It is seen that the last equation supplies a universal relationship, since

neither geometry nor the initial crack size are represented (the initial crack

length enters only in form of the difference C - ' ). Thus the shape of the
o

resulting R vs. 2 curve will remain unaltered by these factors. On the other

hand, the location of the terminal instability point will depend on a specific

geometry of the test. It is so, because the instability state is determined

by the point of tangential contact between the R-curve and a member of the

family of curves originating at (R=0,9=O) and representing the variation of

plastic zone size with crack length at certain fixed values of loading parameter.

Slope and the shape of these curves will, of course, depend on the geometry

of the problem, and so will the position of the instability point.
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APPENDIX

A. Fracture Criterion and Slow Growth of a Crack in an Elastic-plastic Solid.

A local criterion of fracture is postulated by proposing that the sum

of work done at a fixed material point, which undergoes a deformation process

while it traverses the Neuber section of the plastic zone, is a material

property. Thus the crack will move onward if

t
(Al) I S[x ,T]u[x.,T] dT =

Here, S[x ,T] is the restraining stress at the control point P and time T,

while u [xp,T] denotes the time-rate of the displacement at the point P

and time T, and perpendicular to the crack plane. Time increment 6t equals

the time used by the crack front to pass through the Neuber zone (of

characteristic length A) and thus it is related to the rate of crack growth

as follows

(A2) st = A/i

Such a relation was used earlier by Glennie and Willis [Al] to describe a

piece-wise linear approximation of an accelerating crack. The material

property c, has a dimension of energy and it can be related to the threshold

fracture energy, i.e. the specific fracture energy at the onset of crack

growth.

We assume further that the restraining stress is constant (=y) over

the Neuber domain and that the work * can be expressed as a product of y

and the initiation displacement uo, i.e. the tip displacement at which

motion of the crack sets in. Under these assumptions criterion (Al) reduces

to the "final stretch" condition which reads
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(A3) u(xp,t) - u(xp,t - 6t) = uo, 6t = A/i

In other words the increment of deformation generated at the point P, just

before an infinitesimal element located at this point collapses, should

remain constant during the slow propagation stage. Thiscondition is not

identical with the COD criterion since it allows for a variable tip

displacement (note that there are no restrictions imposed on u(xp,t), but

only the increment, say Aup, as defined by the LHS of eq. (A3), is said to

be a constant). Of course, when the motion attains the steady-state limit,

i.e. when the length of the plastic zone R remains constant and the crack

runs fast enough to justify the quasi-steady approximation of Glennie and

Willis over the entire plastic zone, both criteria coincide.

Interestingly, the final stretch criterion is identical with McClintock's

condition of critical strain attained over the Neuber domain, provided

that one defines the strains within the plastic zone of a Dugdale crack as

follows

p
(A4) e(x 1 ) = o + u°  {-grad u(x) } , O xl R

0o

here go is the yield strain, ef is the plastic component of the strain at

fracture and u(xI) is the displacement within the Dugdale plastic zone.

To show the equivalence of the final stretch criterion, as given by eq. (A3),

and the McClintock critical strain concept, let us consider the case of a

general in-plane loading mode (either mode I or II or both applied simultaneously).

For such a case the displacement which results from the appropriate boundary

value problem formulation is

(A5) U(l) =4Y { R(x,(R()-X, R(xl) +[R(xl)-l ]
(A5) U(X) E T- YjR(x) -J[R(xl - Xl]
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Note that the coordinate x l is used here as a time-like parameter. Since the

length of the plastic zone is a function of time, it will therefore depend on xl

in an a-priorunknown fashion. To emphasize this point the symbol u(xl) will

be replaced by u = u(xl,R(xl))

To apply the final stretch criterion we have to compute the displacements

at the point P at time t and time t - 6t. These two instances correspond

to x = 0 and xl = A, respectively. From (A5) we have

4Y -dR

u(t) = u(x=0O) =  R(0) = R(A) - A}

(A6)

u(t-6t) = u(xl=A) = {J[R(A)(R(A)-A)J - R(A) + R(A)-A

Applying the fracture criterion (A3) we arrive at

dR A R+ f[R - A]
(A7) R+g - J[R(R-A)] + - Znf- [R - A) =R

where all R's are taken at x, = A (or at the time T = t-6t). This is the

governing equation of motion relevent to the slow propagation stage in an

elastic-plastic solid, under the in-plane mode of loading (mode I or II).

Equation (A7) describes the universal "R-curve", which was earlier discussed

by Rice [6] for mode III. This curve is also equivalent to the "G-curve"

introduced by Brown and Srawley in 1964, [1].

Note that the initial slope of the R-curve described by eq. (A7)

(AS) dR Ro R -1)] + n n(Ro/A - (Re/A) -11(A3) d o = 2 ' Ro/A +J[(Ro/A) -1]

is remarkably similar to the initial slope of the R-curve predicted for mode III

by Rice [6]

dR modeIII Ro(A9) (-d O - - 1 - ,n (Ro/A)

If we introduce a parameter a (which equals the ratio of the plastic strain at

fracture to the yield strain Ep/E ), then both (A8) and (A9) can be re-written

as follows



(A10) (a+ 1) + l- (a)(A0) dR 0=  (2 l)+ i +a+ JW
a - in (I + a) (b)

The graphs resulting from eqs. (a) and (b) above, and representing our solution

and Rice's are shown in Fig. Al. They converge for both small and large

values of the ductility parameter a.

In fact,.within the range of practical applications, R will be much

greater than A. Equation of motion (A7) reduces then to the simple form

(All) A - R - in n

This form results also from McClintock's critical strain criterion of fracture,

if one defines the strains as in (A4) and makes use of the condition

(A12) E(x 1 = L) = E f where = E + E
0f f

To demonstrate this point let us combine (A4) and (A12)

(A13) - I grad u(xl) = u /A
x = A o

1

and let us compute the gradient of the displacement within the Dugdale

plastic zone. Since u = u(xl,R(xl)), we have

(A14) I grad u(x) I= aUx+ u dR
1 9xl R dx1

where

(A15) u 4Y1 n R(x1) - JR(x1) - x)(AI5) --R = - 1 ZnXV
R nE 2 R(xl) + J(R(x 1 ) + x1)

u Y R(x) - x1  ]
DR TrE R(xl)
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Note that dR/dx, can be replaced by -dR/di, since x = 9 + xl = const.

Substituting (A15) and .(A14) into the critical strain fracture criterion

(A13), and remembering that R/A >> 1, we get the equation of motion identical

with the equation (All) which resulted from the final stretch condition.

Eq. (All), describing the R-curve for an elastic-plastic solid, is a

first order linear differential equation and it can be integrated in a closed

form. The solution expressed in terms of A-units is

1 )4Ro, 2R 4R 2R o(A16) - = ()[exp (2 Ro/A ){ei [in (--) - ] ei [in )

while in terms of R* ( = Kc/8Y2 ) units it is

(A17) i-o = 2R, {ei [in ] - ei [n ]}

x
ei (x) = [et/t] dt

-0O

Indeed, we observe that the amount of slow growth predicted by eq. (A17)

does not depend on either the geometrical configuration or on the initial

crack length. It is, therefore, a universal relation analogous to Rice's

[6] result for mode III.

+) To allow for the change from the A-units to the R,-units, or from the

micro to the macro-units, and to satisfy the boundary condition at the

steady-state limit R =R,, one has to incorporate another postulate regarding

the "opening stretch", namely

4Y A
u = ( ) A n (4R,/A)

This transforms the equation (All) into the simple form

dR 1
di - n (R*/R)
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B. Deriviation of the governing equation of motion for a viscoelastic-

plastic solid.

Consider a viscoelastic matrix containing a Dugdale crack and described

by the constitutive equations

t 3e
(Bl) sij (t) = f G (t - T) ii(T) dT

t 3e(T)
s (t) = f G2 (t - T) dT

- 2

The displacement perpendicular to the crack plane ahead of the crack front

is given by

t
(B2) u (x,t) = u0 (x,t) + (t - ) u (x,T) dT

y y t Y
o

where uo(x,t) is the associated elastic solution to a given boundary value

problem. The normalized creep function (t) can be readily related to the

relaxation moduli Gl(t) and G2 (t). The lower limit of the hereditary integral

in (B2) denotes the time at which a given point (x,y=0) enters the plastic

zone. Consider now a moving crack whose front approaches a stationary control

point P located at x, see Fig. A2. For a general in-plane tensile loading

mode equation (B2) reads

S(xt) Y ~I[R(t)(R(t) + £(t) - x)] +

4 £(t) - x Pn / R(t) + Jt[R(t) + k(t) - x] +

(B3) 2 JR(t) - [R(t) + k(t) - x]

+ f (t - T) [R(T)(T) (R + £(T) - x)] + I } dT
t 2 jR(T) I[R(T)+£(T)-I

where R denotes the current length of the plastic zone and xl is the distance

measured from the crack tip. To apply the final stretch criterion of fracture

we need to evaluate the difference



14

Aup = u(x ,t) - u(xp,t - 6t) =

u (xp,t) - uo(xp,t - 6t) +

(B4) t t-t .
f x (T) uo(xpt- T)dT - J] (T) UO (xp,t -t - T) dT =
t t

o o

t
Au + / [' (t - T) - (t - 6t - T)] uo (xp,T) dT +

t

t t

+j ' (t- T) uo (x~,r) dT
t-6t

The first term on the RHS of the above expression, Au , is known from the

elastic-plastic analysis presented in the preceding section

(B5) Au = R + - [R(R-A)] + - An R +  [R-

The second term in the final form of (B4) can be shown to be proportional

to the second time-derivative of the creep compliance T and therefore it

will be neglected as only the first derivative of T is reiained in the present

analysis. The only restriction imposed is that the change in ; due to the

shift of argument by 6t is small. This means that the function T does not

vary rapidly between time zero and 6t, and that within this interval it can

be approximated by just the first two terms of the McLaurin expansion

(B6) T(6t) = Y(0) + '(0) 6t

(of course may vary within the interval (t o,t) but it is roughly constant

inside each 6t section).
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The very last term of (B4) is further reduced as follows

t t
J (t - T)uo(xp,T)dT = (O) J { J[R(T)(R(T)-Z(t) + 9(T))]
t-6t t-6t

(B7)

_(t)-k(T) R(T) + JfR(T) - £(t) + k(r)}

2 an i R(r) - fI[R(T) - (t) (T ) dT

Note that the coordinate xp is fixed and equal k (t). All functions appearing

in the integrand of expression (B7), although unknown, can be represented by

the following Taylor expansions

k(t) = k(t-6t) + 2 • 6t

k(-) = k(t-6t) + 2 * ('-t+6t)
(B8)

R(T) = R(t-6t) + A * (T-t+6t)

R(t) = R(t-6t) + A * st

where both Z and R are considered constant within the 6t interval. Inserting

the above expressions into (B7) produces

t
J ; (t - T) uo (xp,T) dT =

(B9) t-6t

4Yt T
rE) ()R(t-6t) I p(T)(p(T) - (t - 6t) -

t-6t

S(t-T) 9n 1 f(r) + f[p() - (t-T)/R(t-6t)] J-

2R(t-6t) JP() -_ [p(r)- k (t-T)/R(t-6t)]

Here p (T) denotes the ratio R (T)/R(t - 6t). Combining eqs. (B9), (B5)

and (B4)(subject to the final stretch criterion) gives the following equation

of motion
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dR A iR+ IR-A\
R- J[R(R-A)] + A- + R R t

d' 2 JR - IR-A

(Bl0)6 2 Es p(s) + J[p(s) - s]- f 2 () (- [)( n } ds = R

A 2 p(s) - [p(s) - 0 o

Note that 6Y = P(6t) - Y(O) and the current time T has been replaced here

by a dimensionless variable

(B11) s (t- T)

R(t - 6t)

The upper limit of the integral in (B10) is now defined as

(B12) E = R(t - 6t)

while the function p(s) is given by

(B13) p(s) = 1 + (E - s) dR/dk

Summarizing this section we may say that the function R=R(9) is determined

by the non-linear integro-differential equation (B10), subject to the initial

condition R=R at 9=£ . In order to make the problem tractable we shall

reduce the equation (BO1) to a differential equation. This aim is achieved

by observing that for R/A >> 1 the integrand of the integral / { } ds
o

can be expanded into a series

(B14) { } = 1 + 0(E)

where 0(e) denotes terms containing E ( =A/R) and being on the higher order

of magnitude. Retaining only the first term of (B14), and neglecting A vs. R

in the second and forth terms of (B10), reduces the governing equation of
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motion to the following form

(B15) A + £n ( R ) + 6-R = R
dZ 2 a0

This is the desired form of the differential equation which allows for direct

determination of the R function. Note that the LHS of eq. (B15) can also

be written in a more compact form

(B16) Aup = Au + uo(xp,t-6t)6T

Next, the increment 6T is related to the R function. We have

(B17) 6Y = Y(6t) - '(O) = '(0)6t

Now,denoting the material rate sensitivity T(o) by B, and recalling that

6t = A/i,we may further write

dt dQ Bj -1
(B18) 6 = BA/£ = BA - = BA d dt)

But R depends on a in the following way

(B19) R = R [I,Q(R)]

where Q = Q(Z) is a function describing the applied load (or dimensionless

loading parameter). This generates

dR R DR d+ _
(B20) d- --- + Q d

di 7i @Q di
hence

(B21) = dR R R R) -1

and B dR DR DR -1
6Y = A (---)(-)

(B22) Q a d a aQ

Let us denote the ratio ofi\rate sensitivity B and the rate of loading Q by a

letter C, and insert the result (B22) into the equation (B15). This gives

our governing equation of motion the following form
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(B23) - 4R -i dR
2 =() + A[i + CR (aR/SQ) I

- AC(R/3Q) - 1 R(R/3k) = R , C = B/Q

Note that for C = 0, i.e. for a zero rate-sensitivity B or an infinite rate

of loading Q, we recover the equation of motion valid for an elastic-

plastic solid, as shown in the preceding section by eq. (All).

The other limit case follows from the equaton

(B24) Au0 + u (xp,t - 6t)6T = u

if one considers a purely visco-elastic solid. There plasticity effects

are neglegible and one may think of A and R as being of the same order of

magnitude (in other words the "plastic zone" shrinks to just the "process

zone"). Of course A is still sufficiently small to justify the quasi

steady-state approximation, i.e. £ = const. within the time interval of

6t =A/£. Under these conditions the first term of eq. (B24) reduces

0 A o
(B25) Au = u (t - 6t) = A (t - 6t) u (t -6t)

This added to the second term gives

(B26) (1 + 6T) uo (t - 6t) = u O

or

(B27) IF(6t) Ro = Ro (or R )

or
(6t)7 0 =o ( or c)

The superscript "o" denotes an elastic field entity, while the subscript

"o" denotes an initiation level of the same entity (a material constant).

Since the propagation occurs here at a certain steady-state value of R,

the initiation and the critical levels can be regarded equal.

Equation (B27) is identical with the Knauss-Dietmann equation given

for cracks moving in linearly visco-elastic solids [A7]. A somewhat

different result was obtained by Kostrov and Nikitin [A8], but their result

can be shown to converge to (B27) if one assumes neglegible plastic effects.
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C. Comparison of Slow Growth Theories Based on (a) Cherepanov's, (b)

Morozov's and (c) Wnuk's Criteria.

(a) Constant Fracture Energy Hypothesis (Cherepanov).

Three hypotheses are discussed here. The first one was proposed by

Cherepanov [2]. The basic physical assumption made by Cherepanov is that

the total work done in separating two surfaces during an incremental growth

is a material constant. This statement expressed in terms of elastic

field entities and with the assumption that the Dugdale model applies, reads

(Cl) 4 / Y Su (x, Q(i),t)dx = 2 5 6
£c

c-I-

(C2) 2Y [(_) + (L) - ] dx =

or

(C3) 2Y4[- + - u[x,Q(Z),]dx + 2Yu(tip) =
Pj d PQ Dc

(compare Wnuk [9]). The above relation describes a slowly moving crack

within the subcritical range of the applied load Q. Symbol u denotes the

displacement perpendicular to the crack surface, 2 and a denote the half-

length of the crack and the half-length of an extended (Dugdale) crack,

P Crespectively. Formula (Cl) is valid for an elastic-plastic solid which obeys

the Tresca yield condition, and it does not account for the rate sensitivity.

An extension of the Cherepanov theory was proposed for the visco-elastic

solids by Wnuk [A3]. The governing equation of motion for such a case is

only slightly different from (Cl), and it reads

a Q a

Here uo denotes the associated elastic solution for the same boundary value

problem, T is the normalized creep compliance function, A is the characteristic

dimension of the Neuber domain and A the rate of crack growth.

Let us briefly present the essential results pertinent to the small scale

yielding range. The integrals involved in (C2) or (C4) are evaluated as

follows (R/k << 1):

a a 4

Pu dx f u
I d 

=
- x dx = u(A) - u(a) = u(f) =(E)R(A,Q(A)

(C5) x dx = dx = ( = (4) RZ Z 3 zE 3 RpQ

Combining the above results in accordance with (C2) and (C4) and recalling

that fc can be replaced by 2Yu, or 2Y(4Y/E)R, we arrive at

(C6) R + RQ = R

for an elastic-plastic solid, and

(C7) (R + R } (/) R

for a viscoelastic-plastic solid. Note that the rate-sensitivity and the

time-dependent properties of a solid are reflected in the latter expression

by the creep function T. Of course this function will depend on the propagation

rate i. To reduce the above forms to just one equation
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which would contain only the sought-for function R=R(£), let us eliminate

the rates dQ/d£ and dX/dt. This is done in two steps. First T(A/£) is

approximated by the first two terms of its McLaurin expansion

(C8) 4 = T(0) + Y(0)A/. , T(0) = 1, T (0) = B

and then dk/dt is replaced by Q(dQ/dt)-1 . Since the R-function depends

explicitly on k and Q(), we have also

dR DR BR dQ
(C9) d + - d

hence

dQ dR DR ~R-1
(C10) dP d )

and

BA dR R aR -1
(C1) T = - (-d -q

Therefore, the governing equation of motion can be written for both cases as

2 dR R dR aR (R) -1
(c12) {R + j (R - )}* 1 +CA( d- ) )- 1 = R

where the parameter C = B/O describes the time-dependent response of the

material. Obviously, when C = 0, i.e. when either the rate-sensitivity

B is zero or the rate of loading Q becomes infinite, equation (012) reduces

to the equation (C6) which describes propagation in an elastic-plastic, rate-

insensitive material.

Let us illustrate applications of eq. (C12) for a case of a central

crack contained in a large plate (plane stress only is considered). For

this configuration the plastic zone size R is the following function of 4be

crack length andXloading parameter s (= rs/2Y, 6 - applied stress,

Y = yield point)
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1 Q2
(013) R = Q 2

2

Normalizing R and k by R, (=K 2/8Y ), and inserting
c

3R DR 12
(C14) - = .Q and -= Q

into eq. (C12) p oduces (2p-1/2
(015) { p + p(d- -)}{ +C( dp (2pC)-1/2

3 dc RC d1- 1 + C R* t
2

(C16) Q= 2 -Q
dc Q2(Z QC + Co)

Here p=R/R, C=£/R* and Co =(B/Q)(A/R*). The functions to be determined

from the above non-linear first order differential equations are

R = R(Z) from eq. (C15)

and

Q = Q(a) from eq. (C16)

We do not have an analogous treatment for a large-scale yielding rate-

sensitive problem. However, if the rate-sensitivity is absent, the governing

equation of motion, i.e. eq. (C2), can be shown to take on this form (central

crack configuration):

(C17) = 2[l1 - C(Qtan Q + In cos Q)
17) d 2 [Q sec2 Q - tan Q]

for a plane crack, and

1) C2q3/3 d. ) +C (12 2
(018) (1 - q2 dC (l-q2)a q =  Q

for a penny-shaped crack. Of course both the above equations reduce to a

common form within the small scale yielding range, namely

iq 3 2-2(C19) d - 2 -3 Q2
dC 2 Q3 C2
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(b) Criterion of Constant COD at Instability (Morozov).

In 1969 Morozov [A2] proposed that the subcritical growth ought to be

controlled by the COD criterion rather than a constant specific fracture

energy concept. Since in the subcritical range the tip displacement cannot

be considered constant (in fact it is a monotonic function of the load

remaining in equilibrium with a crack of a given length), one would only

require that the final value of the tip displacement, attained at the terminal

instability point, should be a material constant. This is exactly what

Morozov suggested. In order to ensure a constant COD at the end point of the

stable growth, he modifies the fracture energy 1 in such a way that the

terminal instability is always reached in accordance with the COD criterion.

Thus Morozov's 5c becomes a function of geometry and the current crack

length. Let us denote this function by :, where the letter "R" stands

for "resistance". A similar concept was proposed in 1968 by Wnuk [A4] and [A5].

The function 9R is evaluated from the following equation

R()=2Y f u(x.) dx

a

(C20) = 2Y {u(£,k) + - f u(x,9) dx)

£ Q = Qcrit

The expression contained in the bracket becomes a function of £ only, since

Q is eliminated through the use of the COD criterion. (This latter criterion

is applied to evaluate Qcrit first). The next step, according to Morozov, is

to apply the energy balance equation which reads simply

a
(C21) 2f Y 6u (x,Q(£),9) dx = R(£) 6£

£
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Note that his operator 6 implies an identicaloperation as the one indicated

in eq. (C2).

To summarize briefly Morozov's theory let us write down the essential

results. First, the function R(£)for a plane crack is found to be

(C22) R =  {[l - exp (-2/c)]1/2 Cexp(l/C) cos- [exp(-l/C)] - 1}

and for a penny-shaped crack (compare Wnuk [A4] and [5])it is

(C23) = a - }

Note that both expressions reduce to just Irwin's i for a sufficiently
c

long crack (c>>l). Combining the above formulae with Morozov's criterion

for crack extension (C21) gives

dQ 2{F(C)-C(QtanQ + Zn cos Q)}
(C24) - 2 [Q sec2 Q]

for a 2D crack, and

(C25) _ 3(1q2){ /2(C25) d= 3(1-q2 3/2{ G(C) -C[l-(l-q2)1
/ 2 ] (-q2 ) - 1 / 2

dc q 2 q 2
q q- Q

for a penny-shaped crack. The geometry dependent functions F(C) and G(c)

are given by the expressions inside the brackets of (C22) and (C23), respectively.

No rate effects are included in either of the above equations. When the

plasticity effects are neglegible (c>>1 or Q-0), one can show that both the

equations (C24) and (C25) reduce to a common form

(C26) 4 = - 2
dC C2Q

This equation, surprisingly, has a closed form solution which was not mentioned

by Morozov, and it reads
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(C27) Q(C) = 1 [4( - Co + Co Q2 /2

Obviously, the initial condition Q( ) = Qo is included in the above expression.

Due to the simplicity of eq. (C27) we may directly compute the load and the

crack length at the terminal instability point. Equating dQ/dC to zero we

get

(C28) Qcrit = 2/Ccrit

1 2
crit =  o [2 - Ro/R] R o Qo

where Ro is the plastic zone size at the onset of slow propagation and R,

is the value of R at the fully developed steady-state growth. Formula (C28)

appears to have some experimental support, cf. Sullivan and Freed [A6].

We may add that somewhat unexpectedly the governing equation (C26) may also

be derived directly from the classical Griffith energy balance equation

(C29) 6U = 4Y6S

if the operator 6 is applied in the following sense

(C30) 6U = {I U + d 6

With U = T2 2 /E, Q=7 E/2Y and R, = K2 /8 2 , the energy balance equation
c

(C29) supplemented by (C30) reduces to eq. (C26).

To conclude the section on. Morozov's criterion of fracture, we add

visco-elastic properties into his model. For this purpose consider the small

scale yielding range only, and apply Wnuk's [9] result for the "effectiv 'e"

strain energy due to a crack contained in a visco-elastic solid

(C31) Uef= U (A/ )
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Here, the associated elastic strain energy Uo is (1/2)R, Q2C2 , and the
c

function Y can be approximated by 1 + ' (0) A/f, while Z is replaced by

R,Q(dQ/dc)-1 . Then, the balance of energy criterion

(C32) T (A/) 6U = 2 ~6
c

becomes

(C33) (l+--- ) * 2 + Q2 ) = 2
QR, d d

This is a non-linear differential equation defining dQ/dc in terms of Q

and ,, so that the numerical integration by Runge-Kutta method presents no

problem. If we omit* , however, the terms containing (dQ/d )2, then the

above equation simplifies to a form remarkably similar to eq. (C26), namely

(C34) = 2 - Q2

V CQ[CoQ + r~]

Here, the constant Co encompasses the following group of parameters

B A
C
o Q R*

The ratio A/R* can be roughly approximated by the quotient Ro/R*, where Ro

denotes the threshold value of the plastic zone size. Obviously, with

Co=0 , we recover the rate-insensitive equation (C26).

* The test run on IBM 360 shows no appreciable difference in the shape

of the integral curve resulting from the complete equation (C33) and the

simplified one (C34).
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(c) Final Stretch Criterion (Wnuk)

The criterion of fracture proposed in this work and in [8] requires

that the amount of deformation which occurs within the process zone during

the time interval just prior to fracture is a material property. The

deformation involved here is identified with the increment of displacement

Aup produced at the control point P, within the time 6t = A/i. Thus we have

(C35) Aup = u(xp,t) - u(xp,t - 6t) = Ro (4Y/nE)

where the right hand side contains the material constants only. If the

viscoelastic displacements are substituted into the above expression and

R is considered small vs..the crack size, the equation (C35) takes on the

form (compare eq. (B23)):

dR, Ro -O(/2)£n(4R/A)+ R(DR/39) CA-(R/.Q) - 1
(C36) d A + RCA(R/DQ)-l

Here C = B/Q , and B ( =i(0)) denotes the rate sensitivity. In order to adjust

the right hand side of (C35) to the boundary condition at R(£=£crit ) =R,,

we have made an additional assumption regarding R , namely

(C36a) R = An(4R*/A)

With this substitution and upon normalizing both R and k by the steady-state

value of the plastic zone sizegeq. (C35) becomes

(C37) d - k an(l/p) + Cp(Op/4C )(p/Q)-1
dc 1 + Cp(ap/3Q)-1

p = R/R*, = R/R,

To apply this equation for a certain crack configuration, one has to supplement

it with the function R(Q,Z), which is known from the stress analysis of the

corresponding Dugdale crack problem. Let us illustrate this point for the

simplest case of a central crack in an infinite plate under tension
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We have here

1 2
R = 2 Z( G/2Y) , or

(C38)
1 2p = Q , Q = /2Y

Hence we find the derivatives required in (C37)

(C39) = , = p/

and we have

(C40) , = n (1/p) + 2/1C2
dc 1 + C/J

as the governing equation of the problem. It can be readily transformed into

the (Q,c) plane. With the use of (C38) we obtain

dQ n (2/Q2) - Q2

(C41) QC(2 + CQ)

This is integrated numerically for a chosen set of the initial crack length

Co and the initiation (or threshold) load Q0 . The curves generated in this

way, for various rate-sensitivities C, are then compared with those which

resulted from Cherepanov's and Morozov's hypotheses. The graphs are shown

in Fig. A3. One may observe rather pronounced differences between the three

theories described here, especially for the parameter C approaching zero

(i.e. fast loading, or neglegible rate-sensitivity). For large C all three

curves seem to converge. In the limit of infinite C the graphs reduce to

a horizontal line, which corresponds to a "creeping crack", described in

more detail in [9].
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D. "Resistance" Function or Apparent Surface Energy.

A brittle solid fractures when the elastic energy release rate

attains the critical level, say ' , which in turn is related to the material
c

toughness and the Young modulus ( 5 = K2/E), The Griffith-Irwin criterion
c c

for brittle fracture simply requires that the equality = holds.

This simple view complicates a little when we try to describe fracture

in inelastic solids such as elastic-plastic, or viscoelastic-plastic materials.

There the criterion for fracture (equation of motion) reads *

(Dl) R { 1+2 R } y(/)= R,
3 3Q d

This equation can be cast into a form resembling closely the classical

criterion 5J= , if we agree to modify its right hand side. Note first
c

that the expression (R/R ) Ic is identical with the elastic energy release

rate 5 . Now we can re-write (Dl) as follows

(D2) { 1 + 2 AR d (A/ =3 3Q d c

or, finally

(D3) = R

where the new function fR is defined by (D2) and (D3)2 R d-

(D4) = {[ 1 + aR d (A/)}
R c aQ di

*) To focus the attention we consider here only the results based on

Cherepanov's hypothesis, therefore eq. (Dl) is identical with equation (C7).
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The function 'R will be referred to as the "resistance" function, or as

the "apparent surface energy." For an ideally brittle solid 9, - fc but

otherwise it is a geometry-dependent and a rate-dependent entity. We believe

that an experiment designed to measure the fracture toughness will in fact

record the "apparent toughness", related to 6R by the well-known formula

KR = (E R/ 2

To illustrate possible applications of the proposed equation (D4),

let us consider a central crack contained in a large sheet subjected to

a remotely applied tension Q . Let us consider first an elastic-plastic

solid. The length of the plastic zone is then R = (1/2)k Q2, where

Q = ~ r/2Y and the derivative dQ/dk can be found from the eq. (C16)

Q 3 2 - Q 2 -1
(D5) di q32 }R* /R2 Q3C2

(the rate sensitivity is zero for an elastic-plastic solid while T = 1).

Inserting (D5) into (D4) gives the resistance function

(D6) = c 2

where the function Q = Q(C) has to be determined by integration of (D5).

The curves JR vs. will depend on the initial crack length and the threshold
R

level of the loading parameter Q, as shown in.Fig. A4. A similar equation

for a crack opened by a pair of wedging forces is discussed in [A3]. For

this configuration the equation analogous to (D5) is

2 2
(D) dQ -1 3C [2T 1]

(D7) i R,- 1 2LQ- ]
di 2Q Q2

Q = rP/2YR, , R = (R,/2 2 Q2//
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while an analogue of eq. (D6) is

(D8) 6R = c Q2 /22 2

To conclude this section let us take a look at a visco-elastic solid

described by a Voigt element (E 2 ,r 2 ) connected in series with a spring

E1 . If all plasticity effects are neglected, equation (D4) gives

(D9) =

which for our model will read

(D10) R =c {l + [1 - exp (-A/i-2 P

This defines the rate dependence of the apparent c' often measured in

experiments which involve a crack propagating through a visco-elastic medium.

The graph constructed according to (D10) is shown in Fig. A5a.

The above relation can be generalized for any visco-elastic solid, if

instead of i vs. the propagation rate one plots 5R vs. the current crack

length. Then, for a central crack configuration, it may be shown that

)(Griffith /  plied) 2 (eZ/). The resistance function is proportional
Griffith applied

to. the reciprocal of Y(A/i), therefore

(D11) =  n )

where n is the square of the ratio of the applied stress to the short-time

Griffith stress. A graph resulting from (D11) is shown in Fig. A5b.
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Part II. Dynamic Crack Represented by the Dugdale Model

by

George C. Sih
Institute of Fracture and Solid Mechanics

Lehigh University

SYMBOLS

C1 = Dilatational wave speed

c 2 = Shear wave speed

k = c2/c1

cs = Rayleigh wave speed

ks = Cs/C 1

p = mass density

= Shear Modulus

v = Poissons Ratio

Y = Yield stress of material



32

ATKINSON-BROBERG-DUGDALE MODEL

STATEMENT OF PROBLEM

A crack is expanding in an elastic solid under the in-

fluence of an applied tensile stress P at infinity. As shown

in Fig. 1 a thin region ahead of each crack tip is deformed

plastically, i.e., the stress in this region is assumed to

be equal to the yield stress Y of the material. The length

of the crack at a given instant is 2a and the length of each

plastic zone is w = c-a. The crack tips are moving at a con-

stant velocity & and the ends of the plastic zones are moving

with velocity c. p

Fig. 1

The solution may be obtained by super-posing the problem of a

plate with no crack under uniform tensile stress P and a crack

expanding under the influence of pressure P over the portion
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of the crack surface defined by JIx<a and a pressure (P-Y)

over the surface a<IxI<c. Since the problem possesses sym-

metry with respect to the x-y plane an equivalent problem

for the upper half-space which shall be denoted as Prob. A

may be formulated (see Fig. 2). Retaining consistency with

Atkinsons solution the formulation is for plane strain. The

plane stress solution differs only by a constant and will be

obtained from the plane strain solution.

PROBLEM A

A pressure P is acting on the infinite strip Ixl<at on

the surface z = 0 of a semi-infinite solid z>O. A pressure

(P-Y) is acting on the infinite strips at<Ixl<ct of the sur-

face z = 0. The vertical displacement uz at z = 0 is zero

for jIx>ct.

Find the normal stress at the surface z = 0 for Ixl>ct

and the displacement uz for IxI<ct.

Fig. 2
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In order to solve Problem A, the following problem is first

solved (see Fig.3).

PROBLEM B

A pressure P is acting on the infinite strip Ixl<at of

the surface z = 0. A pressure q acts on the stripsit<jxl< t

whereas no pressure acts on the surface z = 0 for Ixl>6t.

Find the displacement uz at the surface z = 0.

Fig.3

In Fig.3, ci is the dilatational wave velocity.

SOLUTION TO PROBLEM B

The boundary conditions on z = 0 are

o = -P O<lxl<at

= -q it<xl<t (1

= 0 lxl>ct
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For the problem where a pressure p* is applied to the strip

o<xl<ait and no pressure is applied for Ijx>at the boun-

dary conditions are

Oz = -p* O<x<at (2)(2)
= 0 IxI>a 1t

and the following expression has been obtained by Broberg

for a2uz/at 2 on the surface z = 0 (see Brobergs eq.(16) where

his symbols q, 8, T are equivalent to p*, a/c,, and.c t in

this paper),

L.- -[( l] L , t '

+ (3)

where

F(e2 ) (4)
- e 2 ) 2 + (4)

An expression for a 2u /t 2 that corresponds to the boun-

dary conditions of eq.(l) may be obtained by superposing

three problems: positive pressure P acting on a strip ex-

panding with velocity a, positive pressure q acting on a

strip expanding with velocity c, and negative pressure q

acting on a strip expanding with velocity a. This is shown

in Fig. 4.
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Fig. 4

The result is

-- - -- 1 . I

Zm\k TC1xIFI -. _"-. z.,i-

x t LC, C6t/ (5)

SOLUTION TO PROBLEM A

Now use the solution of problem B to set up an integral

equation solution to problem A. Firstconsider an incremental

load on the half space defined by the following boundary con-

ditions (see Fig.5)

do = 0 xj<ct

= -q'(v)dv ct<jxj<vt (6)

= 0 vt<jxl
'- he re(7)

d' X' a &,(7)
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Nrt

Fig. 5

Making use of eqs.(l) and (5), with appropriate change

in variables, the solution for a2u /at 2 corresponding to the

boundary conditions of eq.(6) is:

2t

In order to satisfy the stress and displacement boundary

conditions for Problem A, superpose stresses doz over the

range of eq.(7) together with the stresses

-P o<Ixl<it

'z = qo at<Ixl<ct (9)

0 ct<lxl

where qo = P-Y, on the surface z = 0 in such a manner that

a2u /at2 = 0 .for Ixhl>t.
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The superposed expression for 2U z/;t2 is obtained by

adding (3) with q=qo and the integral over the range c<v<c1

of eq.(8). Then

- 4 -k _ ___ RS [F t

-- 2Tk+cc ((lxh tI- --- ( )]XL

C

Setting 82u z/t 2 = 0 for IxI>ct and making the following

transformation of variables,

2 = , q'(v) = (s) , (11)

Ct C 1

-- I

x r (r) S qpv = (12)

z <



39

or rearranging terms,

1

RE TI

- c~ Z(P- -0 ) (r-
C (r -

or

S (_,/- . +10 ,) J(s)js

(.s - e/c,) _(s)S = 2 , 2 (r- F)
T Tr, r c, (r- ')

Eq.(13) is a singular integral equation which may be written

r) + bs),6s) s C
S -r(14)

where

(r - 2 kL. 1 (

bC(r) 

) 

c(17)

\ CaJ
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The solution of the integral equation (14) may be written

in the form (see page 331, Muskhelishvilli, Singular Integral

Equations )

~ ~ ~ .- ) -___6r_ sk.. c;4-r,)exf (6)(s)) 6

L C-A to Or ) (18)

(r- 172 y a2 -) + bzv-)

where L is an arbitrary constant and

w(r) = J (s) ds (19)
(R c2 )

) (r) = -ni (20)

w(r) is calculated in Appendix I of Broberg and thus.,

exp[-w(r)] is written

(21)
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where ks is the ratio of the Rayleigh wave speed cs to the

dilational wave speed c.

Recalling from eq.(18) that g(r) is dependent on O(r),

it is seen that eq.(18) does not yet solve explicitly for

0(r). Thus, the next step is to consider the integral on

the right hand side of eq.(18). Denote this integral by J.

j (s- c) exf U(s)] bts) s) As
(s - r)/ -bt(s) (22)

C.L

and rewrite g(r) in the form

g(r) = B + A/[r-(a/c,2)] (23)

where

A = 2(P-qn)a(a 2 - E2) (24)

IT C1rCc (25)

Then J may be rewritten.as

S(r (r) + [A/(() (26

J = g(r)I,(r) + [A/((a2/c2)-r ]I ( 2/ 2 (26)
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where

I1I( fsw s)] Q s (27)

SCC

since

(s - AF - A

1(r) and I, (al/c ) may be calculated by contour inte-

gration as in Appendix 2 of Broberg the result being:-

?-k-lr t G) k (- )(-- k?)

and

I1(a2/c2) = T[M-( 2/c2)] - [( 2/c2 )-k )T (29)

where

- 2k -4tc) (30)

with M being a constant it is not necessary to evaluate.

Upon substitution of the values for I (r), I ( 2 /c 2 )

into J(r) and then into eq.(18) the resulting expression for

p(r) is:
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B(M-r) (MM- A L

As-. Z- k L

Next, isolate coefficients of the term 1/(r-k2 ) in eq.(31),

thus rewriting 4(r) as:

'B -M-A tTA +L B BM-A-TA-L

k6(--kI) I 4

TA C,

(32)

The first term on the right hand side of eq.(32) does not

satisfy the displacement boundary conditions for the problem

(see Broberg). Then in order that this term be zero, set

L = BM - Bk2 - A - TA (33)5
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and, O(r) is then,

V ) ('

(34)

In order to evaluate the unknown constant B substitute

eq.(34) into eq.(25). The result of this substitution is

BZ1 =(2qc/c ) [- TA/(a 2 C)]Z2  (35)

where,

k( ( c'>cA - +  -( q1 + 4-k r ,

z[ (ciY,- 41(Itk (C',) f Skl]EC

S kz K(J V-C3) + (36)

and

- zCr( :-2k' K(fi .)
, ,- , 2)

9 .,)( -2k)- E(g(,)

+ + k, g o-- .__;_- _
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(I7 L )

C!,'  Pqt-- k?' ),

(37)

where K and E are complete elliptic integrals of the first

and second kind and where:II is a complete elliptic integral

of the third kind. (see Byrd and Friedman, Handbook of Elliptic

Integrals).

STRESS ON SURFACE Z = 0

The expression for stress over the interval ct<Ix<vt

on the surface z = 0 may be found by integrating eq.(6) over

the range of eq.(7) and recallingAtransformation of variables

in eq.(ll). Thus,

which upon substitution of eq.(34) reads,

±TA (s-Zk s -3 4  k -s
'kk

S( I c,(39)

' i (39)
"),, t 4'f Ix cif
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The objective next is to make the stress singularity at

jIx = Et equal to zero. This is accomplished if

B = AT/[(c/c )2_ (a/c 1 ) 2 ] (40)

with the stress expression becoming,

AT.L r

- c-0 / -
__& _ ct lx<cj

7-t,  L) SO/ -5) (S - V> i ) ,
cLtt

YCIT (41)

where it can be seen by inspection of the integrands in eq.(41)

that the integrals remain bounded when Ixl = at.

DISPLACEMENTS

The region of non-zero displacement on the surface z = 0

is jxl<ct. For this range, eq.(lO0) reduces to,

X X

(42)
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The change of variables in equation (11) will again be

used. Thus, eq.(42) is rewritten in the form,

P L--, -RvEF(k,)] cc, (P C, r
dt - Z1TkecZ I xl (c- I %I) ( a a:e)

+ cm) 0(s) S Oqy < &

1) tZ - s ( r - agX - 7

-.
C,

O'- ( (43)

Eq.(43 may be rewritten as

L _ -r F(1 4 ()

L'

. r < (44)

Further simplification is allowed through eq.(25) so that the

preceding expression becomes

(45)
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It remains to evaluate the integral on the right hand

side of eq.(45). Making use of eq.(34)

ated by contour integration (see for example p. 276 of Muskheli-

range f<r<(c2 2
I )

( -r )-

Ic == 7. (46)

The four integrals in the preceding expression will be evalu-

The real integral I may be f-ame

written as the limit of a de P , ck cut
contour integral in the t-plane.e for example p. 276 of Muskheli

where

cuskhelishvilli, N. I., Some Basic Prolems of tne. Mathematical

Theory of Elasticity -
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4k4c

G'(r) - .-.
cr

G (r) = 1

Then,

-VI - V--" C- + I (48)

tkz-s _ ss LVA_ (49)

I. .. Wvt

21 1 (k2 -t)dt

Sr t(t-r)/(t-k2)(t=c2/cf)2

= -21T f II(r) - GI(r)- GI(r)

where,

fII(r) r-k2

r'(k2-r)(62/c - r)

II kc,
Gol (r) - k

GThen, (r) 0

Then,
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(k2-r) 1 kc ()

2 1

I = t (s-')Z ~s (51)

t- cS5e.

Ipo e

S (t- (t

-r(r) - -t C

where

fIII(r) = - v-ZkZ

GIl(r) = 4kc /i 2 r

G (r ) 4- 4Z3/ j

GIII(r) = 0

Then,

Y- -( - 0 -

a;% __/___ L .r (52)
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14- , "s (53)

21 (k-t) ktt(t-) (t- 4/(t-k t- (t 4'

4,

where,

( r-k)

a: = q k x

k-- O c

• = O

Hence,

(kZ- (4)

(54)
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Using the preceding expressions for I, , I , 1,, and I.

eq.(46) reduces to,

s - =) as) ws 1 { (r-Zw)-4k (-rkt -LA

- T- ( -Jk)- 4 0i- ( -0

( :,. - Z k.- 4k...- c,

(56)

and

-t rII 7 QE -

TrB (r- Z.)- 4k V-'--

2 ( --C,,(c Ao,, -r)

cc~ \: $ (57)

But, recalling eq.(4),

and making use of eqs.(24) and (30), eq.(57) reduces to

and making use of eqs.(24) and (30), eq.(57) reduces to
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u - { v TA '- )cT
S (59)

For the first integration note the following

a ar aL

Hence

3 B TA
r('~V - 2~e A (60)

and

SBu I { 3&r TA

TA A r
TAL J (61)

Making use of eq. 212.9a of Integratafel,

D 2, - / )
T TA Ic.. Li

c. , (62)

Recalling the finiteness condition as expressed by eq.(40),

eq. (62) reduces to

y (cL 0 T)/LC

(63)
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Again writing the derivative in terms of r, a second

integration with respect to r leads to the result,

... ... _ - C6;
'r Y% -C - +, A-(6-

+ --

(64)

In terms of x and t, the result of eq.(64) may be

written

U(,{) - -TA c0: t 6-

x'L 4-& - 'C?.*L-X-  ~ (65)

Half of the cracks opening displacement, 6T, is found by

letting Ixi at. The result is

2u(dt() = 2 a+)TA CIL
r e (66)

It should be noted that the expressions for displacement

make use of. the finiteness condition, eq.(40). Then, by eqs.

(35), (36), (37) and (40) the following relationship between

, c, .P and Y is obtained.
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- AT, w -

4k4 C,4

-C

4k 4 cl 4

a'c C X- I,

a ,: .c,,L L , -

(I, . -

(67)
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points, if the initial crack size is 100A.

Fig. iC. R-curves for a rate sensitive Tresca solid at various levels of the rate sensitivity/speed
of loading ratio. Ultimate instability is reached when the slope of the R-curve plotted
on log-log scale equals unity (marked by circles). Crack of initial length equal 100x
characteristic dimension of Neuber's domain is embedded in an infinite plate.



Fig. ic Slow growth at various loading rates. Loading parameter is
plotted vs. current crack length at a chosen loading rate
and material rheological sensitivity. Initial crack size is 10R,.
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Fig. 2. Subcritical growth of a crack embedded in a viscoelastic solid.
Concentrated loads are applied directly to the crack surface.
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Fig. 3. Subcritical growth of a crack embedded in a viscoelastic solid
and driven by a remotely applied tensile stress.
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Fig. 6. Amount of slow growth A = 5f - 0o vs.
initial crack size/panel width ratio at
a constant initial crack size and a
variable rate sensitivity/rate of
loading ratio.
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